



# PAX-11 A High Performance Booster For IM Applications

Prepared by:

Melissa Mileham, Robert Hatch, and Paul Braithwaite

ATK Aerospace Systems, Brigham City, UT, USA

#### Kenneth E. Lee

U.S. Army Armament Research, Development, and Engineering Center, Picatinny, NJ, USA

Prepared for:

2010 Insensitive Munitions/Energetic Material Technical Symposium

October 11-14, 2010 – Munich, Germany





# Acknowledgments



Appreciation is extended to:

### Dr. Kenneth E. Lee of ARDEC

- Overall technical guidance of this advanced technology initiative
- Financial support

### Mr. Leslie Bracken of ATK Aerospace Systems

Program management and task oversight





### Outline



- Background
- Introduction
- Qualification Plan
- Characterization Testing
- Performance Considerations
- Summary and Conclusions





# Background



- New main charge explosives often use ingredients with large critical diameters (AP, NTO, etc.)
  - Approach results in improved IM behavior
    - Especially effective in sympathetic detonation/impact tests
- Unfortunately these new explosives are also often more difficult to reliably initiate
  - Use of new less powerful boosters compounds the problem
  - Initiation problems can be offset by increasing booster size or by using a more powerful booster explosive
- To address the challenge associated with initiation of new insensitive main charge fills, ARDEC and ATK Aerospace Systems are qualifying a new high-performance booster explosive, PAX-11





### Introduction



- A small number of energetic solids have been used in a wide range of explosives for many decades
  - Melt pour, cast cure, and pressed compositions
  - Historically RDX, HMX, and TATB have been primary materials
  - CL-20 has been evaluated more recently due to its higher performance

|                                  | CL-20                                                         | RDX                                                         | ТАТВ                                                        | НМХ                                            |
|----------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|
| Chemical Formula                 | C <sub>6</sub> H <sub>6</sub> N <sub>12</sub> O <sub>12</sub> | C <sub>3</sub> H <sub>6</sub> N <sub>6</sub> O <sub>6</sub> | C <sub>6</sub> H <sub>6</sub> N <sub>6</sub> O <sub>6</sub> | C4H <sub>8</sub> N <sub>8</sub> O <sub>8</sub> |
| Density (g/cc)                   | 2.04                                                          | 1.82                                                        | 1.94                                                        | 1.91                                           |
| Heat of Formation (kJ/mol)       | 377                                                           | 70                                                          | -140                                                        | 75                                             |
| Calculated P <sub>cj</sub> (GPa) | 48.0                                                          | 35.2                                                        | 31.1                                                        | 39.4                                           |
| Calculated V <sub>d</sub> (km/s) | 10.05                                                         | 8.98                                                        | 8.11                                                        | 9.30                                           |





# Introduction (cont)



- CL-20 is synthesized and crystallized at ATK Aerospace Systems
  - Crystal shape has been improved steadily over the past decade
  - Material is readily ground to uniform distributions



**CL-20 Crystals at 100X** 



**Typical Ground and Unground Particle Size Distributions** 





### **Qualification Plan**



### A 36-kg batch of PAX-11 was produced for qualification

 Primary focus of the current effort is to qualify PAX-11 for use as a booster explosive

# Tests examine a broad range of properties

- General categories are summarized in the table to the right
- Influence of temperature, time, and humidity are evaluated
- Some tests are performed over a oneyear period to evaluate aging
- Tests are conducted per AOP-7 or appropriate MIL-SPEC or STANAG

| Qualification Test Category                   |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|
| Stability                                     |  |  |  |  |  |
| Thermal Characterization                      |  |  |  |  |  |
| Compatibility with Common Materials           |  |  |  |  |  |
| Ignition Temperature                          |  |  |  |  |  |
| Explosive Response                            |  |  |  |  |  |
| Electrostatic Sensitivity                     |  |  |  |  |  |
| Impact Sensitivity                            |  |  |  |  |  |
| Friction Sensitivity                          |  |  |  |  |  |
| Shock Sensitivity                             |  |  |  |  |  |
| Other Sensitivity                             |  |  |  |  |  |
| Chemical, Physical, and Mechanical Properties |  |  |  |  |  |
| Performance Properties                        |  |  |  |  |  |
| Products of Combustion/Detonation             |  |  |  |  |  |
| General Characterization                      |  |  |  |  |  |





# Thermal Testing



- VTS, DSC compatibility, and DSC after elevated temperature aging are all good
  - Additional DSC data will be gathered for material aged for 12 months at 50 ℃

| VTS Results   |                       |  |  |
|---------------|-----------------------|--|--|
| Material      | 5-gram Samples (mL/g) |  |  |
| PAX-11        | 0.018                 |  |  |
| RDX (Class 5) | 0.036                 |  |  |
| LX-14         | 0.023                 |  |  |

| Compatibility of PAX-11 With Common Materials |                     |  |  |  |
|-----------------------------------------------|---------------------|--|--|--|
| Material                                      | DSC Onset Temp. (℃) |  |  |  |
| PAX-11                                        | 233                 |  |  |  |
| PAX-11/Aluminum                               | 233                 |  |  |  |
| PAX-11/4340 Steel                             | 229                 |  |  |  |
| PAX-11/Red Oxide Primer                       | 230                 |  |  |  |
| PAX-11/Anodized Aluminum                      | 217                 |  |  |  |

| DSC Results After Elevated Temperature Storage Through Six Months |                       |      |      |      |      |      |      |      |      |      |
|-------------------------------------------------------------------|-----------------------|------|------|------|------|------|------|------|------|------|
|                                                                   | DSC Onset             |      | 50   | C    |      |      |      | ℃ 00 |      |      |
| Material                                                          | Temp. At<br>Start (℃) | 1 mo | 3 mo | 6 mo | 9 mo | 1 mo | 2 mo | 4 mo | 6 mo | 8 mo |
| PAX-11                                                            | 233                   | 234  | 231  | 236  | 237  | 229  | 231  | 221  | 233  | 228  |
| LX-14                                                             | 270                   | 270  | 270  | 270  | 280  | 270  | 270  | 270  | 270  | 268  |
| CL 5 RDX                                                          | 208                   | 208  | 208  | 208  | 231  | 208  | 208  | 208  | 208  | 211  |





### Characterization



### • Good results for exudation, growth, and compressive strength

| Exudation |                 |               |                 |                 |  |  |
|-----------|-----------------|---------------|-----------------|-----------------|--|--|
| Sample    | Initial Wt. (g) | Final Wt. (g) | Weight Loss (g) | Weight Loss (%) |  |  |
| 1         | 123.8086        | 123.7777      | 0.0309          | 0.0250          |  |  |
| 2         | 123.7582        | 123.7270      | 0.0312          | 0.0252          |  |  |
| 3         | 123.7816        | 123.7505      | 0.0311          | 0.0251          |  |  |

| Irreversible Growth                                    |         |         |       |  |  |  |
|--------------------------------------------------------|---------|---------|-------|--|--|--|
| Sample Initial Volume (cc) Final Volume (cc) Volume Cl |         |         |       |  |  |  |
| 1                                                      | 13.0377 | 12.9982 | -0.3  |  |  |  |
| 2                                                      | 13.0176 | 12.9982 | -0.15 |  |  |  |
| 3                                                      | 13.0504 | 12.9982 | -0.4  |  |  |  |

| Compressive Strength |                      |      |  |  |  |
|----------------------|----------------------|------|--|--|--|
| Test Temp. (℃)       | Maximum Stress (ksi) |      |  |  |  |
| -45                  | 2.93                 | 7.12 |  |  |  |
| 23                   | 3.00                 | 2.22 |  |  |  |
| 65                   | 3.18                 | 1.03 |  |  |  |





### Additional Testing



- Majority of tests have been completed per the qualification test plan
  - VCCT cook-off
  - TCLE
  - CL-20 polymorph analysis on aged PAX-11
  - Small-scale ESD
  - Small-scale burn
- Ongoing tests are being completed per schedule!

| Small-Scale Burn Results |            |                     |                       |                   |  |
|--------------------------|------------|---------------------|-----------------------|-------------------|--|
| Sample                   | Weight (g) | Time to<br>Burn (s) | Length of<br>Burn (s) | Event Description |  |
| 1                        | 100.49     | 16.74               | 6.095                 | Rapid Burn        |  |
| 2                        | 100.11     | 6.00                | 5.445                 | Rapid Burn        |  |
| 3                        | 10.05      | 20.0                | 3.385                 | Rapid Burn        |  |
| 4                        | 10.0       | 20.0                | 2.755                 | Rapid Burn        |  |









### Theoretical Performance



- Theoretical performance of PAX-11 is significantly higher than legacy booster explosives
- Higher performance is predicted for all major indicators:
  - V<sub>D</sub>, P<sub>C,I</sub>, T<sub>C,I</sub>, Expansion Energy
- High performance opens the door for the use of smaller sized boosters to initiate insensitive main charge fills

| Formulation                              | PAX-11 | PBXN-5 | PBXN-7   |
|------------------------------------------|--------|--------|----------|
| Nitramine                                | CL-20  | HMX    | RDX/TATB |
| Density (g/cc)                           | 1.94   | 1.86   | 1.85     |
| P <sub>cj</sub> (GPa)                    | 41.66  | 35.00  | 28.69    |
| V <sub>d</sub> (km/s)                    | 9.47   | 8.86   | 8.04     |
| CJ Temperature (°K)                      | 4597   | 4027   | 3525     |
| Energy at V/V <sub>o</sub> = 6.5 (kJ/cc) | 10.16  | 8.94   | 7.20     |





# **Detonation Velocity**



- Confined and unconfined detonation velocity measurements were performed per MIL-STD-1751A
  - Results for both tests were well above 9 mm/µsec
  - Testing confirmed high predicted detonation velocities







## Plate Dent Testing



- Plate dent test predicts very high P<sub>C,I</sub>
  - Test article was an NOL pipe
  - Predicted pressure is above range of calibrated explosives but correlates well with theoretical predictions









# Critical Diameter Testing



- Critical diameter testing was conducted using pressed pellets of PAX-11
  - L/D of 4 to 1 was used
  - Pellets ranged between 0.20 and 0.50 inches in diameter
  - All pellets were unconfined
  - All pellets fully detonated with measured velocities above
     9 mm/µsec



Witness Plate From PAX-11 Critical Diameter Test

| Critical Diameter Test Results for PAX-11 |             |                         |  |  |  |
|-------------------------------------------|-------------|-------------------------|--|--|--|
| Diameter (in)                             | Length (in) | Average Velocity (km/s) |  |  |  |
| 0.20                                      | 0.812       | 9.103                   |  |  |  |
| 0.25                                      | 1.005       | 9.009                   |  |  |  |
| 0.50                                      | 2.061       | 9.056                   |  |  |  |





# Summary



- PAX-11 is a high-performance, CL-20-based explosive which was developed to outperform legacy booster explosives such as PBXN-5 and PBXN-7
  - Higher performance allows minimization of booster charge while maintaining reliable initiation of even the most insensitive main charge explosives
- Qualification testing is ongoing
  - PAX-11 has demonstrated good stability after aging in elevated temperatures for all tests completed to date

